In this paper we focus on phase dependent loss (PDL), an important aspect of reconfigurable intelligent surfaces (RIS) where the signals reflected from the RIS elements are attenuated by varying amounts depending on the phase rotation provided by the element. To evaluate the effects of PDL, we analyse the SNR of a SIMO RIS-aided wireless link. We assume that the channel between the base station (BS) and RIS is a rank-1 LOS channel while the user (UE)-BS and UE-RIS are correlated Rayleigh channels. The RIS design is optimal in the absence of PDL and maximizes the SNR in this scenario. Specifically, we derive a closed form expression for the mean SNR in the presence of PDL. The attenuation function used for PDL was developed from a detailed circuit analysis of RIS elements. Leveraging the derived results, we analytically characterise the impact of PDL on the mean SNR. Numerical results are conducted to validate the derived expressions and verify the analysis.


翻译:在本文中,我们侧重于阶段依赖性损失(PDL),这是可重新配置的智能表面的一个重要方面,其反映的RIS元素的信号根据元素提供的阶段轮用的不同数量而减弱。为了评估PDL的影响,我们分析了SIMO的RIS辅助无线链接的SNR。我们假设,基地站和RIS之间的频道是一级一级LOS频道,而用户(UE)-BS和UE-RIS是相交的Rayleigh频道。在缺乏PDL的情况下,RIS设计是最佳的,在这种假设中,使SNR最大化。具体地说,我们在PDL在场的情况下,为SNR提供了一种封闭的表达形式。PDL使用的减轻功能是从对RIS元素的详细电路分析中开发的。我们利用所获得的结果,我们分析了PDL对中值 SNR的影响。进行了量化结果,以验证衍生的表达并核实分析结果。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
103+阅读 · 2019年12月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员