Mobile sensing-based modeling of behavioral changes could predict an oncoming psychotic relapse in schizophrenia patients for timely interventions. Deep learning models could complement existing non-deep learning models for relapse prediction by modeling latent behavioral features relevant to the prediction. However, given the inter-individual behavioral differences, model personalization might be required for a predictive model. In this work, we propose RelapsePredNet, a Long Short-Term Memory (LSTM) neural network-based model for relapse prediction. The model is personalized for a particular patient by training using data from patients most similar to the given patient. Several demographics and baseline mental health scores were considered as personalization metrics to define patient similarity. We investigated the effect of personalization on training dataset characteristics, learned embeddings, and relapse prediction performance. We compared RelapsePredNet with a deep learning-based anomaly detection model for relapse prediction. Further, we investigated if RelapsePredNet could complement ClusterRFModel (a random forest model leveraging clustering and template features proposed in prior work) in a fusion model, by identifying latent behavioral features relevant for relapse prediction. The CrossCheck dataset consisting of continuous mobile sensing data obtained from 63 schizophrenia patients, each monitored for up to a year, was used for our evaluations. The proposed RelapsePredNet outperformed the deep learning-based anomaly detection model for relapse prediction. The F2 score for prediction were 0.21 and 0.52 in the full test set and the Relapse Test Set (consisting of data from patients who have had relapse only), respectively. These corresponded to a 29.4% and 38.8% improvement compared to the existing deep learning-based model for relapse prediction.
翻译:对行为变化的移动感测模型可以预测精神分裂病患者精神病复发情况,以便及时采取干预措施。深度学习模型可以补充现有的非深入学习模式,通过模拟与预测相关的潜伏行为特征来进行复发预测。然而,鉴于个人之间的行为差异,可能需要模型个性化来进行预测模型。在这项工作中,我们提议重写PredadNet,一个基于长期短期内存(LSTM)的神经网络模型,以进行复发预测。该模型通过使用与特定病人最相似的病人数据进行培训,对特定病人进行感应。一些人口和基线心理健康得分被视为个人化指标,用以进行复发预测。我们调查了个人化对培训数据集特征的影响、学习嵌入和复发预测性表现。我们把Refred PreadNet模型与一个基于深层次学习的异常检测模型进行比较。此外,如果RefreadNet能够补充CRF2Model(一个随机的森林模型,在前期工作中建议采用的是更深的更深的更深的更深的更坏情况组和模板特征),将一些更深层的更深层的更深层的更深层的更深层的坏情况模型作为个人更深层的模型进行。8 和更深层的神经的神经的内分分分数,用来进行自我再测算测算测算测算测算法的模型,用来进行每到每到每到每年的每年的每年的每年的比的每年的计算。每个年的测算法,用于每年的模型,用于每年的测算法,用来算算算算算法,用于每年的计算。每个年的模型用于每年的计算。每个年的计算。每个年都用来进行不断的计算。