The studies on black-box adversarial attacks have become increasingly prevalent due to the intractable acquisition of the structural knowledge of deep neural networks (DNNs). However, the performance of emerging attacks is negatively impacted when fooling DNNs tailored for high-resolution images. One of the explanations is that these methods usually focus on attacking the entire image, regardless of its spatial semantic information, and thereby encounter the notorious curse of dimensionality. To this end, we propose a pixel correlation-based attentional black-box adversarial attack, termed as PICA. Firstly, we take only one of every two neighboring pixels in the salient region as the target by leveraging the attentional mechanism and pixel correlation of images, such that the dimension of the black-box attack reduces. After that, a general multiobjective evolutionary algorithm is employed to traverse the reduced pixels and generate perturbations that are imperceptible by the human vision. Extensive experimental results have verified the effectiveness of the proposed PICA on the ImageNet dataset. More importantly, PICA is computationally more efficient to generate high-resolution adversarial examples compared with the existing black-box attacks.


翻译:由于难以获得深神经网络的结构知识,黑盒对抗性攻击的研究越来越普遍。然而,当欺骗专为高分辨率图像设计的DNN时,新出现的攻击的性能受到不利影响。其中一个解释是,这些方法通常侧重于攻击整个图像,而不管其空间语义信息如何,从而遇到臭名昭著的维度诅咒。为此,我们提议采用像素的基于关联的黑盒对抗性攻击,称为 PICA。首先,我们只将突出区域的每两个相邻像素中的一个作为目标,利用关注机制和图像的像素相关性,使黑盒攻击的维度降低。之后,采用一般的多目标进化算法绕过减少的像素,并产生人类视觉无法察觉的扰动。广泛的实验结果证实了在图像网络数据集上拟议的PICA的有效性。更重要的是,PICA在计算上比现有的黑盒攻击更高效地生成高分辨率的对抗性例子。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
55+阅读 · 2020年11月17日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
Top
微信扫码咨询专知VIP会员