Android malware is a spreading disease in the virtual world. Anti-virus and detection systems continuously undergo patches and updates to defend against these threats. Most of the latest approaches in malware detection use Machine Learning (ML). Against the robustifying effort of detection systems, raise the \emph{evasion attacks}, where an adversary changes its targeted samples so that they are misclassified as benign. This paper considers two kinds of evasion attacks: feature-space and problem-space. \emph{Feature-space} attacks consider an adversary who manipulates ML features to evade the correct classification while minimizing or constraining the total manipulations. \textit{Problem-space} attacks refer to evasion attacks that change the actual sample. Specifically, this paper analyzes the gap between these two types in the Android malware domain. The gap between the two types of evasion attacks is examined via the retraining process of classifiers using each one of the evasion attack types. The experiments show that the gap between these two types of retrained classifiers is dramatic and may increase to 96\%. Retrained classifiers of feature-space evasion attacks have been found to be either less effective or completely ineffective against problem-space evasion attacks. Additionally, exploration of different problem-space evasion attacks shows that retraining of one problem-space evasion attack may be effective against other problem-space evasion attacks.
翻译:类固醇恶意软件是虚拟世界中的一种传播疾病。 抗病毒和检测系统不断进行补丁和更新, 以防范这些威胁。 恶意检测中的大多数最新方法都是使用机器学习(ML) 。 与探测系统的强力抗衡, 提高抗争者对目标样本的偏差, 从而将其分类为良性。 本文考虑了两种规避攻击: 地貌空间和问题空间。 \ emph{ 自然空间} 袭击认为, 操纵ML特性以规避正确分类的对手, 而同时尽量减少或限制全部操纵。\ textit{ Problem- space} 袭击是指规避攻击, 从而改变实际样本。 具体地说, 本文分析了安卓德鲁德恶意软件领域这两种类型袭击之间的差距。 两种类型的规避攻击之间的隔阂, 是通过使用每种逃避攻击的类型的分类师的再培训过程来研究的。 实验表明, 这两种再培训的分类系统之间的差距是急剧的, 可能增加到96\ 。 重新训练的地空域规避攻击的分类人员对空间攻击的重新分类者,, 一种是无效的探索, 一种对空间的探索, 一种是无效的,, 一种对空间的不断攻击的探索问题, 一种是无效的 。