Single shot detectors that are potentially faster and simpler than two-stage detectors tend to be more applicable to object detection in videos. Nevertheless, the extension of such object detectors from image to video is not trivial especially when appearance deterioration exists in videos, \emph{e.g.}, motion blur or occlusion. A valid question is how to explore temporal coherence across frames for boosting detection. In this paper, we propose to address the problem by enhancing per-frame features through aggregation of neighboring frames. Specifically, we present Single Shot Video Object Detector (SSVD) -- a new architecture that novelly integrates feature aggregation into a one-stage detector for object detection in videos. Technically, SSVD takes Feature Pyramid Network (FPN) as backbone network to produce multi-scale features. Unlike the existing feature aggregation methods, SSVD, on one hand, estimates the motion and aggregates the nearby features along the motion path, and on the other, hallucinates features by directly sampling features from the adjacent frames in a two-stream structure. Extensive experiments are conducted on ImageNet VID dataset, and competitive results are reported when comparing to state-of-the-art approaches. More remarkably, for $448 \times 448$ input, SSVD achieves 79.2% mAP on ImageNet VID, by processing one frame in 85 ms on an Nvidia Titan X Pascal GPU. The code is available at \url{https://github.com/ddjiajun/SSVD}.


翻译:单镜头探测器可能比两阶段探测器更快、更简单,但往往更适用于视频中的物体探测。然而,这种物体探测器从图像到视频的扩展并非微不足道,特别是当视频、\emph{例如}、运动模糊或隐蔽的外观出现变质时。一个有效的问题是如何探索跨框架的时间一致性,以促进探测。在本文中,我们提议通过相邻框架的聚合来提高每个框架的特征来解决这一问题。具体地说,我们介绍单一射击视频物件探测器(SSVD) -- -- 一种新结构,将特征聚合成一阶段探测器,用于视频中的物体探测。从技术上讲,SSVD采用Fetatur Pyramid网络(FPN)作为主干网,以产生多尺度特征。与现有的特征集成方法不同,SSVVD,一方面,通过相邻框架直接取样,两流结构中的相邻框架的致幻象特征。在图像NetVIDDDD中进行广泛实验,在图像网络中进行4-D数据处理,而竞争性的图像框架则使用4-A-lab 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
53+阅读 · 2020年3月16日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员