Archaeology is an intriguing domain for computer vision. It suffers not only from shortage in (labeled) data, but also from highly-challenging data, which is often extremely abraded and damaged. This paper proposes a novel semi-supervised model for classification and retrieval of images of archaeological artifacts. This model utilizes unique data that exists in the domain -- manual drawings made by special artists.These are used during training to implicitly transfer the domain knowledge from the drawings to their corresponding images, improving their classification results. We show that while learning how to classify, our model also learns how to generate drawings of the artifacts, an important documentation task, which is currently performed manually. Last but not least, we collected a new dataset of stamp-seals of the Southern Levant.
翻译:考古学是计算机视觉的一个令人感兴趣的领域。 它不仅缺少(标签的)数据, 也缺乏极具挑战性的数据, 这些数据往往受到极其严重的损耗和损坏。 本文提出了一个新的半监督的考古文物图象分类和检索新模式。 这个模式利用了这个领域的独特数据 -- -- 由特殊艺术家制作的手工绘画。 这些在培训中被用于将域知识从图画中隐含地传输到相应的图像中, 改进它们的分类结果。 我们显示, 在学习如何分类的同时, 我们的模型还学会如何生成文物图画, 这是一项重要的文献工作, 目前是手动完成的。 最后但同样重要的是, 我们收集了一套关于南黎凡特海豹的新数据集。