It is well-documented how artificial intelligence can have (and already is having) a big impact on chemical engineering. But classical machine learning approaches may be weak for many chemical engineering applications. This review discusses how challenging data characteristics arise in chemical engineering applications. We identify four characteristics of data arising in chemical engineering applications that make applying classical artificial intelligence approaches difficult: (1) high variance, low volume data, (2) low variance, high volume data, (3) noisy/corrupt/missing data, and (4) restricted data with physics-based limitations. For each of these four data characteristics, we discuss applications where these data characteristics arise and show how current chemical engineering research is extending the fields of data science and machine learning to incorporate these challenges. Finally, we identify several challenges for future research.
翻译:大量文献记载了人工智能对化学工程的巨大影响。但古典机器学习方法在许多化学工程应用中可能很薄弱。本审查讨论了化学工程应用中如何产生具有挑战性的数据特性。我们确定了化学工程应用中产生的数据的四个特点,这些特点使得难以应用经典人工智能方法的化学工程应用数据具有以下四个特点:(1) 差异很大,数量较少,(2) 差异低,数量大,(3) 数据吵闹/损坏/丢失,(4) 数据受物理限制,这四个数据特性中每一个,我们讨论了这些数据特性产生的应用,并表明目前的化学工程研究正在如何扩大数据科学和机器学习领域,以纳入这些挑战。最后,我们确定了未来研究面临的若干挑战。