Uncertainty quantification techniques such as the time-dependent generalized polynomial chaos (TD-gPC) use an adaptive orthogonal basis to better represent the stochastic part of the solution space (aka random function space) in time. However, because the random function space is constructed using tensor products, TD-gPC-based methods are known to suffer from the curse of dimensionality. In this paper, we introduce a new numerical method called the 'flow-driven spectral chaos' (FSC) which overcomes this curse of dimensionality at the random-function-space level. The proposed method is not only computationally more efficient than existing TD-gPC-based methods but is also far more accurate. The FSC method uses the concept of 'enriched stochastic flow maps' to track the evolution of a finite-dimensional random function space efficiently in time. To transfer the probability information from one random function space to another, two approaches are developed and studied herein. In the first approach, the probability information is transferred in the mean-square sense, whereas in the second approach the transfer is done exactly using a new theorem that was developed for this purpose. The FSC method can quantify uncertainties with high fidelity, especially for the long-time response of stochastic dynamical systems governed by ODEs of arbitrary order. Six representative numerical examples, including a nonlinear problem (the Van-der-Pol oscillator), are presented to demonstrate the performance of the FSC method and corroborate the claims of its superior numerical properties. Finally, a parametric, high-dimensional stochastic problem is used to demonstrate that when the FSC method is used in conjunction with Monte Carlo integration, the curse of dimensionality can be overcome altogether.


翻译:不确定的量化技术, 如基于时间的通用多角度混乱( TD- gPC), 使用一个适应性正方位基础, 以更好地代表解决方案空间( aka随机功能空间) 的随机功能空间。 但是, 由于随机功能空间是使用高压产品构建的, 基于 TD- gPC 的方法已知会受到维度诅咒的影响。 在本文中, 我们引入了名为“ 流驱动光谱混乱( FSC) ” ( FSC) 的新的数字方法, 该方法克服了随机功能空间层面的维度诅咒。 提议的方法不仅比现有的 TD- gPC 方法更高效地计算出解决方案空间的随机部分( a) 解决方案。 FSC 方法使用“ 强化的随机流图” 来及时跟踪一个定量随机功能空间的演变。 要将概率信息从一个随机功能空间转移到另一个空间, 我们开发了两种方法, 并在此展示了一种直径直方位信息的概率信息, 而第二个方法是使用非直径方位法的转换方法,, 其直径直径直到直径直方方方位的直方位的直方位系统, 展示了该方法可以显示一个直径直径直径直方位系统。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2020年11月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
3+阅读 · 2017年10月27日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年3月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
3+阅读 · 2017年10月27日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员