Much recent research effort has been directed to the development of efficient algorithms for solving minimax problems with theoretical convergence guarantees due to the relevance of these problems to a few emergent applications. In this paper, we propose a unified single-loop alternating gradient projection (AGP) algorithm for solving smooth nonconvex-(strongly) concave and (strongly) convex-nonconcave minimax problems. AGP employs simple gradient projection steps for updating the primal and dual variables alternatively at each iteration. We show that it can find an $\varepsilon$-stationary point of the objective function in $\mathcal{O}\left( \varepsilon ^{-2} \right)$ (resp. $\mathcal{O}\left( \varepsilon ^{-4} \right)$) iterations under nonconvex-strongly concave (resp. nonconvex-concave) setting. Moreover, its gradient complexity to obtain an $\varepsilon$-stationary point of the objective function is bounded by $\mathcal{O}\left( \varepsilon ^{-2} \right)$ (resp., $\mathcal{O}\left( \varepsilon ^{-4} \right)$) under the strongly convex-nonconcave (resp., convex-nonconcave) setting. To the best of our knowledge, this is the first time that a simple and unified single-loop algorithm is developed for solving both nonconvex-(strongly) concave and (strongly) convex-nonconcave minimax problems. Moreover, the complexity results for solving the latter (strongly) convex-nonconcave minimax problems have never been obtained before in the literature. Numerical results show the efficiency of the proposed AGP algorithm. Furthermore, we extend the AGP algorithm by presenting a block alternating proximal gradient (BAPG) algorithm for solving more general multi-block nonsmooth nonconvex-(strongly) concave and (strongly) convex-nonconcave minimax problems. We can similarly establish the gradient complexity of the proposed algorithm under these four different settings.


翻译:最近许多研究都致力于开发高效的电流算法,以解决微离子变异性问题,因为这些问题与一些突发应用程序相关。在本文中,我们提议一个统一的单环交替梯度投影(AGP)算法,以解决平滑的非conex-(强势) conculive和(强力) convex-nonconal mox问题。GP使用简单的梯度投影步骤来更新原始变量和双向变量,或者在每次循环中。我们表明,它可以在 $\ varepex- comlix 中找到一个目标函数的固定点 $\ valexal- laxal- staty 。Axleft (\ varepl) nual- comcal- discial- disquil- lax lax- lax lax discial- discial- lax) lax lax lax- disl- dromax lax- lax- dromax- dromax- lax- lax- lax- lax-max- lax-max-maxxxxxl) max max max maxl max max max max max max max max max maxx maxx max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max masl max max max maxxxx max max max max

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员