项目名称: 基于p-型氮化铟纳米线阵列的高效太赫兹辐射源产生方法研究

项目编号: No.U1530120

项目类型: 联合基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 楚盛

作者单位: 中山大学

项目金额: 63万元

中文摘要: 高效率、室温、宽带可调的太赫兹辐射源,已经成为现代应用物理迫切需要解决的科学问题。InN这种新型的三族氮化物材料,在丹倍效应太赫兹辐射源上具有独特优势:包括低的载流子能谷间散射率、较大内建电场强度、较大的电子/空穴迁移率及比值等。另一方面,纳米材料的高光学吸收率和比表面积使得InN纳米线材料有可能成为强太赫兹辐射源。但目前InN纳米材料的辐射能力仍然不足,主要问题是InN有过强的表面效应,导致高的表面电子浓度以致对太赫兹波进行了反吸收。为了解决这个问题,本项目提出了一种新的途径,拟使用掺Mg的p型氮化铟纳米线阵列作为太赫兹发射源。主要因为具有无极化表面p型InN纳米线的低浓度空穴,能够减弱和消除表面电荷对太赫兹波的屏蔽效应,极大的有利于形成高效率的太赫兹辐射源。此外,本项目将使用纳米线阵列结构、电性调制、表面 等离子基元辅助方法,从而进一步形成目标0.1%太赫兹能量转化效率。

中文关键词: 功能材料;纳米光子学;太赫兹;氮化铟;超快光学

英文摘要: Terahertz sources with high efficiency, room-temperature operation, and wide emission spectra range has become a key problem in modern applied physics. As a novel group III nitride material, InN possesses several advantages in photo-Dember effect THz emitters: low intervalley scattering rate, high built-in field, and high electron/hole mobility ratio, etc. On the other hand, because of their strong light absorption and high aspect ratio, InN nanowires may become strong THz emitters. However, the capability of current InN nanostructures sources is still not satisfactory, which is due to too strong screen effect from the surface accumulation of electrons. In order to solve this problem, we propose a novel approach in this project: we will use p-type InN nanowire arrays with non-polor surface as THz source to counter the efficiency difficulty. This p-type InN will have low surface hole concentrations, which is crucial to weaken the surface carrier screen effect and increase THz emission out. Furthermore, nanowires array, electrical properties modulations, as well as plasmonics assistance would help to enhance the energy absorption and emission, and will in turn be possible to render the overall THz conversion efficiency up to 0.1%.

英文关键词: Functional materials;Nanophotonics;Terahertz;Indium Nitride;Ultrafast Optics

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
【博士论文】基于冲量的加速优化算法
专知会员服务
25+阅读 · 2021年11月29日
专知会员服务
13+阅读 · 2021年8月28日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
14+阅读 · 2020年12月12日
专知会员服务
21+阅读 · 2020年9月14日
【CVPR2022】EDTER:基于Transformer的边缘检测
专知
2+阅读 · 2022年3月18日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
面向Transformer模型的高效预训练方法
哈工大SCIR
1+阅读 · 2021年6月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Zero-Shot Logit Adjustment
Arxiv
0+阅读 · 2022年5月5日
RecipeSnap -- a lightweight image-to-recipe model
Arxiv
0+阅读 · 2022年5月4日
Arxiv
0+阅读 · 2022年5月4日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
20+阅读 · 2021年9月21日
小贴士
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
【博士论文】基于冲量的加速优化算法
专知会员服务
25+阅读 · 2021年11月29日
专知会员服务
13+阅读 · 2021年8月28日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
14+阅读 · 2020年12月12日
专知会员服务
21+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员