We are assisting at a growing interest in the development of learning architectures with application to digital communication systems. Herein, we consider the detection/decoding problem. We aim at developing an optimal neural architecture for such a task. The definition of the optimal criterion is a fundamental step. We propose to use the mutual information (MI) of the channel input-output signal pair, which yields to the minimization of the a-posteriori information of the transmitted codeword given the communication channel output observation. The computation of the a-posteriori information is a formidable task, and for the majority of channels it is unknown. Therefore, it has to be learned. For such an objective, we propose a novel neural estimator based on a discriminative formulation. This leads to the derivation of the mutual information neural decoder (MIND). The developed neural architecture is capable not only to solve the decoding problem in unknown channels, but also to return an estimate of the average MI achieved with the coding scheme, as well as the decoding error probability. Several numerical results are reported and compared with maximum a-posteriori and maximum likelihood decoding strategies.
翻译:我们正以越来越多的兴趣协助开发应用数字通信系统的学习结构。 我们在这里考虑探测/解码问题。 我们的目标是为这一任务开发一个最佳神经结构。 最佳标准的定义是一个根本性的步骤。 我们提议使用频道输入-输出信号配对的相互信息(MI), 以最大限度地减少通信频道输出观测所传输代码字眼的外在信息。 计算异端信息是一项艰巨的任务, 对大多数频道来说,它都是未知的。 因此, 我们必须学习它。 为了达到这个目的,我们提出一个新的基于歧视性表述的线性天线测量仪。 这导致产生相互信息神经解码器(MIND) 。 发达的神经结构不仅能够解决未知渠道的解码问题,而且能够返回对与编码计划所实现的平均MI的估计数以及解码错误概率。 已经报告了几个数字结果,并且与最大程度的、最大可能性的解码战略进行了比较。