This paper presents a supervised mixing augmentation method termed SuperMix, which exploits the salient regions within input images to construct mixed training samples. SuperMix is designed to obtain mixed images rich in visual features and complying with realistic image priors. To enhance the efficiency of the algorithm, we develop a variant of the Newton iterative method, $65\times$ faster than gradient descent on this problem. We validate the effectiveness of SuperMix through extensive evaluations and ablation studies on two tasks of object classification and knowledge distillation. On the classification task, SuperMix provides comparable performance to the advanced augmentation methods, such as AutoAugment and RandAugment. In particular, combining SuperMix with RandAugment achieves 78.2\% top-1 accuracy on ImageNet with ResNet50. On the distillation task, solely classifying images mixed using the teacher's knowledge achieves comparable performance to the state-of-the-art distillation methods. Furthermore, on average, incorporating mixed images into the distillation objective improves the performance by 3.4\% and 3.1\% on CIFAR-100 and ImageNet, respectively. {\it The code is available at https://github.com/alldbi/SuperMix}.


翻译:本文介绍了一种监督混合增强方法,称为SuperMix,它利用投入图像中的突出区域来建立混合培训样本。超级Mix旨在获得具有丰富视觉特征的混合图像,并符合现实图像前缀。为了提高算法的效率,我们开发了牛顿迭代方法的变种,即65美元比梯度下降速度快65美元。我们通过对两个目标分类和知识蒸馏任务进行广泛的评估和消化研究来验证超级Mix的有效性。在分类任务中,超级Mix提供了与高级增强方法(如AutoAugment和RandAugment)相似的性能。特别是,将超级混合与RandAugment相结合,在图像网络上实现了78.2 ⁇ 1级精度与ResNet50。关于提炼任务,仅使用教师的知识对混合图像进行分类,其性能与最新技术蒸馏方法相当。此外,平均而言,将混合图像纳入蒸馏目标,使CIFAR-100和图像网络的性能分别提高3.4 ⁇ 和3.1 ⁇ 。SUB/MIx/MIx 的代码可在 https@s/comlix。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年8月8日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员