Plausibility is a formalization of exact tests for parametric models and generalizes procedures such as Fisher's exact test. The resulting tests are based on cumulative probabilities of the probability density function and evaluate consistency with a parametric family while providing exact control of the $\alpha$ level for finite sample size. Model comparisons are inefficient in this approach. We generalize plausibility by incorporating weighing which allows to perform model comparisons. We show that one weighing scheme is asymptotically equivalent to the likelihood ratio test (LRT) and has finite sample guarantees for the test size under the null hypothesis unlike the LRT. We confirm theoretical properties in simulations that mimic the data set of our data application. We apply the method to a retinoblastoma data set and demonstrate a parent-of-origin effect. Weighted plausibility also has applications in high-dimensional data analysis and P-values for penalized regression models can be derived. We demonstrate superior performance as compared to a data-splitting procedure in a simulation study. We apply weighted plausibility to a high-dimensional gene expression, case-control prostate cancer data set. We discuss the flexibility of the approach by relating weighted plausibility to targeted learning, the bootstrap, and sparsity selection.


翻译:光谱是精确测试参数模型和一般程序(如Fisher的精确测试)的正规化。结果的测试基于概率密度函数的累积概率,并评估与参数组的一致性,同时为有限的样本大小提供精确控制$alpha$水平。模型比较在这种方法中效率低下。我们通过纳入能够进行模型比较的称重来概括合理性。我们显示,一个称重方案与概率比比测试(LRT)无根据的假设为试验大小提供有限的抽样保证。我们在模拟模拟模拟中确认了模拟数据应用数据集的理论特性。我们将这种方法应用到再生细胞数据组,并展示母体效应。我们深视光学还可用于高空数据分析以及惩罚性回归模型的P值。我们在模拟研究中显示与数据分裂程序相比的优异性性表现。我们将加权的可信度应用到高度基因表达、案例控制前列状态和定向癌症选择方法。我们通过高维度、案例控制前列腺选择方法,我们讨论高维度的高度数据选择灵活性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2020年11月20日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员