The key idea of power-domain non-orthogonal multiple access (NOMA) is to exploit the superposition coding (SC) combined with successive interference cancellation (SIC) technique (called SC-SIC) while reducing the receivers' complexity as well as error propagation. Actually, NOMA suggests a low-complexity scheme, where users are grouped into multiple clusters operating in isolated resource blocks, and SC-SIC is performed among users within each cluster. In this paper, we propose a globally optimal joint intra- and inter-cluster power allocation for any arbitrary user grouping to maximize users' sum-rate. In this algorithm, we exploit the closed-form of optimal intra-cluster power allocation obtained in our previous work. Then, by transforming network-NOMA to an equivalent virtual network-OMA, we show that the optimal power allocation can be obtained based on the very fast water-filling algorithm. Interestingly, we observe that each NOMA cluster acts as a virtual OMA user whose effective channel gain is obtained in closed form. Also, each virtual OMA user requires a minimum power to satisfy the minimum rate demand of its real multiplexed user. In simulation results, we evaluate the performance gap between fully SC-SIC, NOMA, and OMA, in terms of users sum-rate, and outage probability.
翻译:电源域非垂直多重存取( NOMA) 的关键理念是利用连续取消干扰( SIC) 技术( SC) 的超级编码( SC) 以及连续取消干扰( SIC) 技术( SC- SIC ), 同时降低接收器的复杂性和错误传播。 事实上, NOMA 提出一个低复杂性计划, 将用户分组成多组, 在孤立的资源区块中运行, 并在每个组群内的用户中执行 SC- SIC 。 在本文中, 我们提议为任意的用户组合提供全球最佳的 内部和集群间联合权力配置, 以最大限度地实现用户的总和率 。 在这个算法中, 我们利用了在先前工作中获得的最佳集群内电力分配的封闭形式。 然后, 通过将网络- NOMA 转换为同等的虚拟网络- OMA, 我们表明, 最佳的电力分配可以基于非常快速的填水算法。 有趣的是, 我们观察到, 每一个 NOMA 组群集作为虚拟的虚拟用户, 以封闭形式获得有效频道收益的虚拟 OMA 。 此外, 每个虚拟用户需要最低限度的能量来满足其实际多重用户的最低比率需求, 。