An intelligent reflecting surface (IRS)-aided wireless powered mobile edge computing (WP-MEC) system is conceived, where each device's computational task can be divided into two parts for local computing and offloading to mobile edge computing (MEC) servers, respectively. Both time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) schemes are considered for uplink (UL) offloading. Given the capability of IRSs in intelligently reconfiguring wireless channels over time, it is fundamentally unknown which multiple access scheme is superior for MEC UL offloading. To answer this question, we first investigate the impact of three different dynamic IRS beamforming (DIBF) schemes on the computation rate of both offloading schemes, based on the flexibility for the IRS in adjusting its beamforming (BF) vector in each transmission frame. Under the DIBF framework, computation rate maximization problems are formulated for both the NOMA and TDMA schemes, respectively, by jointly optimizing the IRS passive BF and the resource allocation. We rigorously prove that offloading adopting TDMA can achieve the same computation rate as that of NOMA, when all the devices share the same IRS BF vector during the UL offloading. By contrast, offloading exploiting TDMA outperforms NOMA, when the IRS BF vector can be flexibly adapted for UL offloading. Despite the non-convexity of the computation rate maximization problems for each DIBF scheme associated with highly coupled optimization variables, we conceive computationally efficient algorithms by invoking alternating optimization. Our numerical results demonstrate the significant performance gains achieved by the proposed designs over various benchmark schemes.


翻译:智能反射表面(IRS) 辅助无线电动移动边缘计算(WP-MEC) 系统。 设计了一个智能反射表面( IRS) 帮助的无线移动边缘计算( WP- MEC) 系统, 每个装置的计算任务可以分为当地计算和卸载到移动边缘计算( MEC) 服务器的两部分。 考虑采用时分多重存取( TDMA) 和非横向多存取( NOMA) 方案, 以便在每个传输框中调整其波形矢量( UL) 。 根据 DIBBFF 框架, 由于IRS 在智能重新配置无线通道时, 多重存取机制的多重存取机制是优于 MEC UL 的。 为了联合优化IMS 被动 BF 和 相关资源配置, 我们严格地证明,在采用 IMA 快速递减( IMA) 的计算结果时, 将自动递增 IMA 的轨算算出我们每个矢量的轨迹。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
已删除
生物探索
3+阅读 · 2018年2月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月7日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
已删除
生物探索
3+阅读 · 2018年2月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员