Automated essay scoring (AES) is a vital area of research aiming to provide efficient and accurate assessment tools for evaluating written content. This study investigates the effectiveness of two popular similarity metrics, Jaccard coefficient, and Cosine similarity, within the context of vector space models(VSM)employing unigram, bigram, and trigram representations. The data used in this research was obtained from the formative essay of the citizenship education subject in a junior high school. Each essay undergoes preprocessing to extract features using n-gram models, followed by vectorization to transform text data into numerical representations. Then, similarity scores are computed between essays using both Jaccard coefficient and Cosine similarity. The performance of the system is evaluated by analyzing the root mean square error (RMSE), which measures the difference between the scores given by human graders and those generated by the system. The result shows that the Cosine similarity outperformed the Jaccard coefficient. In terms of n-gram, unigrams have lower RMSE compared to bigrams and trigrams.
翻译:暂无翻译