This paper introduces a new Bayesian changepoint approach called the decoupled approach that separates the process of modeling and changepoint analysis. The approach utilizes a Bayesian dynamic linear model (DLM) for the modeling step and a weighted penalized likelihood estimator on the posterior of the Bayesian DLM to identify changepoints. A Bayesian DLM, with shrinkage priors, can provide smooth estimates of the underlying trend in presence of complex noise components; however, the inability to shrink exactly to zero make changepoint analysis difficult. Penalized likelihood estimators can be effective in estimating location of changepoints; however, they require a relatively smooth estimate of the data. The decoupled approach combines the flexibility of the Bayesian DLM along with the hard thresholding property of penalized likelihood estimator to extend application of changepoint analysis. The approach provides a robust framework that allows for identification of changepoints in highly complex Bayesian models. The approach can identify changes in mean, higher order trends and regression coefficients. We illustrate the approach's flexibility and robustness by comparing against several alternative methods in a wide range of simulations and two real world examples.
翻译:本文介绍了一种新的巴伊西亚变化点办法,称为分解方法,将模型和变化点分析过程分开。该办法使用巴伊西亚动态线性模型(DLM)作为模型步骤的模型,并在巴伊西亚变化点的后部使用一个加权定值概率测算器来确定变化点。一个具有缩微前科的巴伊西亚变化点测算仪,可以在复杂的噪音成分存在的情况下,对基本趋势作出平稳的估计;然而,无法精确缩到零使变化点分析变得困难。刑事可能性估测器在估计变化点的位置方面可能是有效的;然而,它们需要相对平稳的数据估计。脱钩方法结合了巴伊西亚变化点的灵活度和受处罚的可能性测算器的硬阈值,以扩大变化点分析的应用。该方法提供了一个强有力的框架,以便确定高度复杂的巴伊斯模式的变化点。该方法可以确定中平均值、较高顺序趋势和回归系数的变化。我们用多种不同的方法来比较世界范围的实际灵活性和稳健性模型。我们用两种不同的方法来比较了世界范围的实际模拟。