The Alaskan landscape has undergone substantial changes in recent decades, most notably the expansion of shrubs and trees across the Arctic. We developed a dynamic statistical model to quantify the impact of climate change on the structural transformation of ecosystems using remotely sensed imagery. We used latent trajectory processes in a hierarchical framework to model dynamic state probabilities that evolve annually, from which we derived transition probabilities between ecotypes. Our latent trajectory model accommodates temporal irregularity in survey intervals and uses spatio-temporally heterogeneous climate drivers to infer rates of land cover transitions. We characterized multi-scale spatial correlation induced by plot and subplot arrangement in our study system. We also developed a Polya-Gamma sampling strategy to improve computation. Our model facilitates inference on the response of ecosystems to shifts in the climate and can be used to predict future land cover transitions under various climate scenarios.
翻译:近几十年来,阿拉斯加的地貌发生了重大变化,最明显的是北极地区灌木和树木的扩张。我们开发了一个动态统计模型,用遥感图像量化气候变化对生态系统结构转型的影响。我们利用等级框架的潜伏轨迹过程模拟每年演变的动态概率,由此得出生态类型之间的过渡概率。我们潜伏轨迹模型在测量间隔中考虑到时间的不规则性,并使用瞬间混杂的气候驱动因素来推断土地覆盖转型的速度。我们从研究系统中的地块和子块安排中找出了多种规模的空间相关关系。我们还开发了一种多功能-伽马取样战略来改进计算。我们的模型有助于推断生态系统对气候变化的反应,并可用于预测各种气候情景下的未来土地覆盖变化。