Driven by the challenging task of finding robust discretization methods for Galbrun's equation, we investigate conditions for stability and different aspects of robustness for different finite element schemes on a simplified version of the equations. The considered PDE is a second order indefinite vector-PDE which remains if only the highest order terms of Galbrun's equation are taken into account. A key property for stability is a Helmholtz-type decomposition which results in a strong connection between stable discretizations for Galbrun's equation and Stokes and nearly incompressible linear elasticity problems.
翻译:在为Galbrun的等式寻找稳健的分解方法这一艰巨任务的驱动下,我们调查了稳定的条件和不同有限元素组合在简化方程式版本上的不同稳健性的不同方面。所考虑的PDE是第二顺序的无限矢量- PDE,如果只考虑Galbrun等式的最高顺序条件,它仍然是这一顺序。稳定的一个关键属性是Helmholtz型分解,它导致Galbrun的等式和Stoks的稳定分解与几乎不可压缩的线性弹性问题之间有着紧密的联系。