We consider the problem of recovering a complex vector $\mathbf{x}\in \mathbb{C}^n$ from $m$ quadratic measurements $\{\langle A_i\mathbf{x}, \mathbf{x}\rangle\}_{i=1}^m$. This problem, known as quadratic feasibility, encompasses the well known phase retrieval problem and has applications in a wide range of important areas including power system state estimation and x-ray crystallography. In general, not only is the the quadratic feasibility problem NP-hard to solve, but it may in fact be unidentifiable. In this paper, we establish conditions under which this problem becomes {identifiable}, and further prove isometry properties in the case when the matrices $\{A_i\}_{i=1}^m$ are Hermitian matrices sampled from a complex Gaussian distribution. Moreover, we explore a nonconvex {optimization} formulation of this problem, and establish salient features of the associated optimization landscape that enables gradient algorithms with an arbitrary initialization to converge to a \emph{globally optimal} point with a high probability. Our results also reveal sample complexity requirements for successfully identifying a feasible solution in these contexts.
翻译:我们考虑从美元方位测量中回收一个复杂矢量$mathbf{x}xxxxxxxxxxxxxxxxxxxxxxbb{C}C ⁇ n$美元的问题。 这个问题被称为“ 方位可行性”, 包括众所周知的阶段回收问题, 并在一系列重要领域应用, 包括电力系统状态估测和X射线晶体学。 一般来说, 方位可行性问题不仅难以解决, 而且事实上可能无法辨别。 在本文中, 我们设置了这一问题成为 { 身份可识别} 的条件, 当矩阵 方位 ($_ A_ i=1}m$) 是赫米特基质从复杂的高地分布中取样。 此外, 我们探索了这个问题的非convex {optimization} 的配方, 并确定了相关优化景观的显著特征, 使得梯度值能够以任意初始化的概率测量到我们最精确的样本 。