We present new policy mirror descent (PMD) methods for solving reinforcement learning (RL) problems with either strongly convex or general convex regularizers. By exploring the structural properties of these overall seemly highly nonconvex problems we show that the PMD methods exhibit fast linear rate of convergence to the global optimality. We develop stochastic counterparts of these methods, and establish an ${\cal O}(1/\epsilon)$ (resp., ${\cal O}(1/\epsilon^2)$) sampling complexity for solving these RL problems with strongly (resp., general) convex regularizers using different sampling schemes, where $\epsilon$ denote the target accuracy. We further show that the complexity for computing the gradients of these regularizers, if necessary, can be bounded by ${\cal O}\{(\log_\gamma \epsilon) [(1-\gamma)L/\mu]^{1/2}\log (1/\epsilon)\}$ (resp., ${\cal O} \{(\log_\gamma \epsilon ) (L/\epsilon)^{1/2}\}$)for problems with strongly (resp., general) convex regularizers. Here $\gamma$ denotes the discounting factor. To the best of our knowledge, these complexity bounds, along with our algorithmic developments, appear to be new in both optimization and RL literature. The introduction of these convex regularizers also greatly expands the flexibility and applicability of RL models.


翻译:我们通过探讨这些总体上似乎高度非隐性的问题的结构特性,表明PMD方法具有与全球最佳化的快速线性趋同率。我们开发了这些方法的随机对应方法,并建立了美元(1-\gamma) (1/\epsilon)$(resp.,$_cal O})(1/\epsilon2)美元)的取样复杂度,以解决这些强化学习(RL)问题。通过探索这些整体上似乎高度非隐含问题的结构性性质,我们发现,PMd方法表现出与全球最佳化的趋同率快速直线性。我们开发这些方法的复杂度可以被$ocal O}(1/\gamma) (1-\gmma)L/\\%%%%%%(1/\epsilon) 和我们最常变现性(美元)的缩略性变现性变现性(R_gasimalislus) 和这些普通变现性变现性变现性(L_x) 的变现性变现性(Rislus/calislationalislus)。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员