Recently, the automated translation of source code from one programming language to another by using automatic approaches inspired by Neural Machine Translation (NMT) methods for natural languages has come under study. However, such approaches suffer from the same problem as previous NMT approaches on natural languages, viz. the lack of an ability to estimate and evaluate the quality of the translations; and consequently ascribe some measure of interpretability to the model's choices. In this paper, we attempt to estimate the quality of source code translations built on top of the TransCoder model. We consider the code translation task as an analog of machine translation (MT) for natural languages, with some added caveats. We present our main motivation from a user study built around code translation; and present a technique that correlates the confidences generated by that model to lint errors in the translated code. We conclude with some observations on these correlations, and some ideas for future work.


翻译:最近,正在研究使用神经机器翻译(NMT)方法启发的自然语言自动翻译源代码从一种编程语言到另一种语言的源代码自动化翻译方法,但这类方法与以前自然语言的NMT方法存在同样的问题,即缺乏估计和评价翻译质量的能力,因此将某种可解释的度量纳入模型的选择。在本文中,我们试图估算建在TransCoder模型之上的源代码翻译的质量。我们认为代码翻译工作是天然语言机器翻译的模拟,并附有一些附加说明。我们介绍了围绕代码翻译进行的用户研究的主要动机;我们提出了一种将该模型产生的信任与翻译代码中的误差联系起来的方法。我们最后对这些关联性提出了一些意见,并对未来工作提出了一些想法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】图形学基础,427页pdf
专知会员服务
145+阅读 · 2020年7月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2021年1月21日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】图形学基础,427页pdf
专知会员服务
145+阅读 · 2020年7月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员