Interpreters facilitate multi-lingual meetings but the affordable set of languages is often smaller than what is needed. Automatic simultaneous speech translation can extend the set of provided languages. We investigate if such an automatic system should rather follow the original speaker, or an interpreter to achieve better translation quality at the cost of increased delay. To answer the question, we release Europarl Simultaneous Interpreting Corpus (ESIC), 10 hours of recordings and transcripts of European Parliament speeches in English, with simultaneous interpreting into Czech and German. We evaluate quality and latency of speaker-based and interpreter-based spoken translation systems from English to Czech. We study the differences in implicit simplification and summarization of the human interpreter compared to a machine translation system trained to shorten the output to some extent. Finally, we perform human evaluation to measure information loss of each of these approaches.


翻译:口译人员为多语文会议提供便利,但费用低廉的一套语文往往比需要的要小。自动同时翻译语言可以扩展所提供的一套语文。我们调查这种自动系统是否应该遵循原发言者或口译人员的做法,以更长时间的延误为代价,提高翻译质量。为了回答这个问题,我们发布了Europarl Simultaneous Incorpus(ESIC),10小时的欧洲议会英语录音和录音记录,并同时译成捷克文和德文。我们评估了英语和捷克文的讲口语翻译系统的质量和长期性。我们研究了与在某种程度上缩短产出的机器翻译系统相比,人类口译人员的隐性简化和总称化与机器翻译系统的差别。最后,我们进行了人力评估,以衡量每一种方法的信息损失。

0
下载
关闭预览

相关内容

通过计算机进行不同语言之间的直接语音翻译,辅助不同语言背景的人们进行沟通已经成为世界各国研究的重点。 和一般的文本翻译不同,语音翻译需要把语音识别、机器翻译和语音合成三大技术进行集成,具有很大的挑战性。
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
实验室1篇论文被Transactions on SMC: Systems录用
inpluslab
6+阅读 · 2018年10月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月13日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关VIP内容
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
实验室1篇论文被Transactions on SMC: Systems录用
inpluslab
6+阅读 · 2018年10月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员