In this work, we focus on the challenging task, neuro-disease classification, using functional magnetic resonance imaging (fMRI). In population graph-based disease analysis, graph convolutional neural networks (GCNs) have achieved remarkable success. However, these achievements are inseparable from abundant labeled data and sensitive to spurious signals. To improve fMRI representation learning and classification under a label-efficient setting, we propose a novel and theory-driven self-supervised learning (SSL) framework on GCNs, namely Graph CCA for Temporal self-supervised learning on fMRI analysis GATE. Concretely, it is demanding to design a suitable and effective SSL strategy to extract formation and robust features for fMRI. To this end, we investigate several new graph augmentation strategies from fMRI dynamic functional connectives (FC) for SSL training. Further, we leverage canonical-correlation analysis (CCA) on different temporal embeddings and present the theoretical implications. Consequently, this yields a novel two-step GCN learning procedure comprised of (i) SSL on an unlabeled fMRI population graph and (ii) fine-tuning on a small labeled fMRI dataset for a classification task. Our method is tested on two independent fMRI datasets, demonstrating superior performance on autism and dementia diagnosis.
翻译:在这项工作中,我们侧重于具有挑战性的任务,即使用功能磁共振成像(fMRI)进行神经疾病分类。在基于人口图表的疾病分析中,图形进化神经网络(GCNs)取得了显著的成功。然而,这些成就与大量标签数据是分不开的,对虚假信号敏感。为了在标签效率环境下改进FMRI的代言学习和分类,我们提出了一个关于GCN的新颖和理论驱动的自我监督学习框架,即Temalal自我监督的关于FMRI分析GATE的GP CCA。具体地说,它要求设计一个适合和有效的SSL战略,以提取FMRI的形成和强健特征。为此,我们调查了FMRI动态功能连接(FCs)为SLS培训提供的若干新的图形增强战略。此外,我们利用了对不同时间嵌入的理论化和理论影响。因此,产生了一种新型的GCN学习程序,由(i)SSL关于无标签的FMRI的FMI数据分析、对我们的高级数据进行微调的FMI数据分类。