Hyperscanning with functional near-infrared spectroscopy (fNIRS) is an emerging neuroimaging application that measures the nuanced neural signatures underlying social interactions. Researchers have assessed the effect of sex and task type (e.g., cooperation versus competition) on inter-brain coherence during human-to-human interactions. However, no work has yet used deep learning-based approaches to extract insights into sex and task-based differences in an fNIRS hyperscanning context. This work proposes a convolutional neural network-based approach to dyadic sex composition and task classification for an extensive hyperscanning dataset with $N = 222$ participants. Inter-brain signal similarity computed using dynamic time warping is used as the input data. The proposed approach achieves a maximum classification accuracy of greater than $80$ percent, thereby providing a new avenue for exploring and understanding complex brain behavior.
翻译:具有功能近红外光谱学的超强扫描是一种新兴的神经成像应用,它测量了社会互动背后的细微神经特征;研究人员评估了性与任务类型(例如合作与竞争)对人与人之间互动过程中人与人之间一致性的影响;然而,尚未采用深层次的基于学习的方法,在红外线和红外光谱学联合会超扫描的背景下,利用深层次的基于学习的方法来获取对性别和任务差异的洞察力;这项工作提议采用基于动态神经网络的方法,对异性构成和任务分类,用$N=222美元对广泛的超超扫描数据集进行分类;使用动态时间扭曲计算出的脑间信号相似性被用作输入数据;拟议方法实现最高分类精确度超过80美元,从而为探索和理解复杂的脑行为提供了新的途径。