We design a deterministic algorithm that, given $n$ points in a \emph{typical} constant degree regular~graph, queries $O(n)$ distances to output a constant factor approximation to the average distance among those points, thus answering a question posed in~\cite{MN14}. Our algorithm uses the method of~\cite{MN14} to construct a sequence of constant degree graphs that are expanders with respect to certain nonpositively curved metric spaces, together with a new rigidity theorem for metric transforms of nonpositively curved metric spaces. The fact that our algorithm works for typical (uniformly random) constant degree regular graphs rather than for all constant degree graphs is unavoidable, thanks to the following impossibility result that we obtain: For every fixed $k\in \N$, the approximation factor of any algorithm for average distance that works for all constant degree graphs and queries $o(n^{1+1/k})$ distances must necessarily be at least $2(k+1)$. This matches the upper bound attained by the algorithm that was designed for general finite metric spaces in~\cite{BGS}. Thus, any algorithm for average distance in constant degree graphs whose approximation guarantee is less than $4$ must query $\Omega(n^2)$ distances, any such algorithm whose approximation guarantee is less than $6$ must query $\Omega(n^{3/2})$ distances, any such algorithm whose approximation guarantee less than $8$ must query $\Omega(n^{4/3})$ distances, and so forth, and furthermore there exist algorithms achieving those parameters.


翻译:我们设计了一种确定性算法,给定一个典型常数度正则图中的 $n$ 个点,通过查询 $O(n)$ 个距离,能够输出这些点之间平均距离的常数因子近似值,从而回答了~\cite{MN14} 中提出的问题。我们的算法利用~\cite{MN14} 的方法构造一系列常数度图,这些图相对于某些非正曲率度量空间是扩展图,并结合了一个关于非正曲率度量空间度量变换的新刚性定理。我们的算法仅适用于典型(均匀随机)常数度正则图而非所有常数度图,这一局限性是不可避免的,这源于我们获得的以下不可能性结果:对于每个固定的 $k\in \N$,任何适用于所有常数度图且仅查询 $o(n^{1+1/k})$ 个距离的平均距离算法,其近似因子必然至少为 $2(k+1)$。这与~\cite{BGS} 中为一般有限度量空间设计的算法所达到的上界相匹配。因此,任何近似保证小于 $4$ 的常数度图平均距离算法必须查询 $\Omega(n^2)$ 个距离,任何近似保证小于 $6$ 的此类算法必须查询 $\Omega(n^{3/2})$ 个距离,任何近似保证小于 $8$ 的此类算法必须查询 $\Omega(n^{4/3})$ 个距离,依此类推,并且存在能够达到这些参数的算法。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员