In this work, we address a task allocation problem for human multi-robot settings. Given a set of tasks to perform, we formulate a general Mixed-Integer Linear Programming (MILP) problem aiming at minimizing the overall execution time while optimizing the quality of the executed tasks as well as human and robotic workload. Different skills of the agents, both human and robotic, are taken into account and human operators are enabled to either directly execute tasks or play supervisory roles; moreover, multiple manipulators can tightly collaborate if required to carry out a task. Finally, as realistic in human contexts, human parameters are assumed to vary over time, e.g., due to increasing human level of fatigue. Therefore, online monitoring is required and re-allocation is performed if needed. Simulations in a realistic scenario with two manipulators and a human operator performing an assembly task validate the effectiveness of the approach.
翻译:在这项工作中,我们解决了人类多机器人环境的任务分配问题。根据需要执行的一系列任务,我们制定了一个总体的混合-内插线性规划(MILP)问题,目的是尽量缩短总体执行时间,同时优化所执行任务的质量以及人和机器人的工作量;考虑到代理人员(包括人和机器人)的不同技能,使人类操作人员能够直接执行任务或发挥监督作用;此外,如果需要多个操纵人员来执行任务,他们可以密切合作;最后,根据人类环境的现实情况,假设人类参数会随时间而变化,例如,由于人类疲劳程度的增加,因此,需要进行在线监测,并在必要时进行重新定位;在现实情况下,与两个操纵人员以及执行组装任务的操作人员进行模拟,这验证了方法的有效性。