An efficient contour integral technique to approximate a cluster of nonlinear eigenvalues of a polynomial eigenproblem, circumventing certain large inversions from a linearization, is presented. It is applied to the nonlinear eigenproblem that arises from a frequency-dependent perfectly matched layer. This approach is shown to result in an accurate method for computing leaky modes of optical fibers. Extensive computations on an antiresonant fiber with a complex transverse microstructure are reported. This structure is found to present substantial computational difficulties: Even when employing over one million degrees of freedom, the fiber model appears to remain in a preasymptotic regime where computed confinement loss values are likely to be off by orders of magnitude. Other difficulties in computing mode losses, together with practical techniques to overcome them, are detailed.
翻译:介绍了一种有效整体技术,以近似一组非线性单元问题的非线性单元值,绕过线性化的某些大反向,它适用于一个完全匹配的频率依赖层产生的非线性单元问题。这种方法表明,它产生了计算光纤泄漏模式的准确方法。报告了对具有复杂反向微结构的抗共纤维进行的广泛计算。这一结构造成了巨大的计算困难:即使雇用了100多万度的自由度,纤维模型似乎仍然处于一种精密的抽查制度之中,在这种制度下,计算到的封闭损失值有可能因数量不同而脱落。计算模式损失方面的其他困难,以及克服这些损失的实用技术,也十分详细。