Inverse heat problems refer to the estimation of material thermophysical properties given observed or known heat diffusion behaviour. Inverse heat problems have wide-ranging uses, but a critical application lies in quantifying how building facade renovation reduces thermal transmittance, a key determinant of building energy efficiency. However, solving inverse heat problems with non-invasive data collected in situ is error-prone due to environmental variability or deviations from theoretically assumed conditions. Hence, current methods for measuring thermal conductivity are either invasive, require lengthy observation periods, or are sensitive to environmental and experimental conditions. Here, we present a PINN-based iterative framework to estimate the thermal conductivity k of a wall from a set of thermographs; our framework alternates between estimating the forward heat problem with a PINN for a fixed k, and optimizing k by comparing the thermographs and surface temperatures predicted by the PINN, repeating until the estimated k's convergence. Using both environmental data captured by a weather station and data generated from Finite-Volume-Method software simulations, we accurately predict k across different environmental conditions and data collection sampling times, given the temperature profile of the wall at dawn is close to steady state. Although violating the steady-state assumption impacts the accuracy of k's estimation, we show that our proposed framework still only exhibits a maximum MAE of 4.0851. Our work demonstrates the potential of PINN-based methods for reliable estimation of material properties in situ and under realistic conditions, without lengthy measurement campaigns. Given the lack of research on using machine learning, and more specifically on PINNs, for solving in-situ inverse problems, we expect our work to be a starting point for more research on the topic.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员