We introduce a pure--stress formulation of the elasticity eigenvalue problem with mixed boundary conditions. We propose an H(div)-based discontinuous Galerkin method that imposes strongly the symmetry of the stress for the discretization of the eigenproblem. Under appropriate assumptions on the mesh and the degree of polynomial approximation, we demonstrate the spectral correctness of the discrete scheme and derive optimal rates of convergence for eigenvalues and eigenfunctions. Finally, we provide numerical examples in two and three dimensions.
翻译:我们提出了一种基于H(div)的不连续加勒金方法,该方法对因蛋白质分解造成的压力进行强烈的对称。根据对网格和多子近似程度的适当假设,我们展示离子体的光谱正确性,并得出对异基因值和元件的最佳趋同率。最后,我们提供了两个和三个层面的数字例子。