We propose a method for estimation and inference for bounds for heterogeneous causal effect parameters in general sample selection models where the treatment can affect whether an outcome is observed and no exclusion restrictions are available. The method provides conditional effect bounds as functions of policy relevant pre-treatment variables. It allows for conducting valid statistical inference on the unidentified conditional effects. We use a flexible debiased/double machine learning approach that can accommodate non-linear functional forms and high-dimensional confounders. Easily verifiable high-level conditions for estimation and misspecification robust inference guarantees are provided as well. Re-analyzing data from a large scale field experiment on Facebook, we find significant depolarization effects of counter-attitudinal news subscription nudges. The effect bounds are highly heterogeneous and suggest strong depolarization effects for moderates, conservatives, and younger users.
翻译:在一般抽样选择模型中,我们建议一种估计和推断各种因果效应参数界限的方法,这种方法的处理可影响结果是否得到遵守,而且没有排除性限制;该方法提供有条件效果界限,作为政策相关预处理变量的功能;该方法允许对未知的有条件效应进行有效的统计推断;我们使用一种灵活的分级/双机学习方法,能够容纳非线性功能形式和高维共体;还提供了易于核查的关于估计和分辨不当的可靠推断保证的高水平条件;在脸书上进行大规模实地实验的重新分析数据,我们发现反态度新闻订阅率的显著脱极效应;其效果高度差异,表明对温和、保守和年轻用户的极分化效应。