Including local automatic gain control (AGC) circuitry into a silicon cochlea design has been challenging because of transistor mismatch and model complexity. To address this, we present an alternative system-level algorithm that implements channel-specific AGC in a silicon spiking cochlea by measuring the output spike activity of individual channels. The bandpass filter gain of a channel is adapted dynamically to the input amplitude so that the average output spike rate stays within a defined range. Because this AGC mechanism only needs counting and adding operations, it can be implemented at low hardware cost in a future design. We evaluate the impact of the local AGC algorithm on a classification task where the input signal varies over 32 dB input range. Two classifier types receiving cochlea spike features were tested on a speech versus noise classification task. The logistic regression classifier achieves an average of 6% improvement and 40.8% relative improvement in accuracy when the AGC is enabled. The deep neural network classifier shows a similar improvement for the AGC case and achieves a higher mean accuracy of 96% compared to the best accuracy of 91% from the logistic regression classifier.
翻译:将本地自动增益控制( AGC) 电路纳入硅胶凝胶( AGC) 电路设计一直由于晶体器不匹配和模型复杂而具有挑战性。 解决这个问题, 我们提出一个替代系统级算法, 通过测量单个频道的输出峰值活动, 在一个硅孔中执行频道特定 AGC 的 AGC 。 频道的带宽过滤器增益动态地适应输入振幅增速, 以便平均产出峰值保持在一个限定范围内。 由于这个 AGC 机制只需要计算和添加操作, 在未来设计中可以以较低的硬件成本实施。 我们评估了输入信号超过 32 dB 输入范围的本地 AGC 算法对分类任务的影响。 接收 Cochlea 峰值的两种分类器类型在语音与噪音分类任务之间进行了测试。 逻辑回归分析器在启用 AGC 时, 平均提高了6% 和 40.8% 的精度。 深神经网络分类仪显示 AGC 案例也有类似的改进, 并实现了96% 的平均值, 高于来自 分析器的91% 的最佳精确度 。