Numerous metamorphic and polymorphic malicious variants are generated automatically on a daily basis by mutation engines that transform the code of a malicious program while retaining its functionality, in order to evade signature-based detection. These automatic processes have greatly increased the number of malware variants, deeming their fully-manual analysis impossible. Malware classification is the task of determining to which family a new malicious variant belongs. Variants of the same malware family show similar behavioral patterns. Thus, classifying newly discovered malicious programs and applications helps assess the risks they pose. Moreover, malware classification facilitates determining which of the newly discovered variants should undergo manual analysis by a security expert, in order to determine whether they belong to a new family (e.g., one whose members exploit a zero-day vulnerability) or are simply the result of a concept drift within a known malicious family. This motivated intense research in recent years on devising high-accuracy automatic tools for malware classification. In this work, we present DAEMON - a novel dataset-agnostic malware classifier. A key property of DAEMON is that the type of features it uses and the manner in which they are mined facilitate understanding the distinctive behavior of malware families, making its classification decisions explainable. We've optimized DAEMON using a large-scale dataset of x86 binaries, belonging to a mix of several malware families targeting computers running Windows. We then re-trained it and applied it, without any algorithmic change, feature re-engineering or parameter tuning, to two other large-scale datasets of malicious Android applications consisting of numerous malware families. DAEMON obtained highly accurate classification results on all datasets, establishing that it is also platform-agnostic.


翻译:每天通过变异引擎自动生成大量变形和多变的恶意变异体,这些变异体在改变恶意程序代码的同时保留其功能,以逃避基于签名的检测。这些自动过程大大增加了恶意软件变异体的数量,认为完全人工分析是不可能的。 恶意分类是确定哪个家庭属于新的恶意变异体的任务。 同一恶意软件家族的变异显示类似的行为模式。 因此, 将新发现的恶意程序和应用分类有助于评估它们构成的风险。 此外, 恶意软件分类有助于确定哪些新发现的变异体应该接受安全专家的手工分析, 以便确定这些变异体是否属于一个新家庭( 例如,一个成员利用零天脆弱性分析) 或仅仅是一个已知恶意家族的概念漂移的结果。 这促使近年来对设计高精度的恶意分类自动工具进行深入研究。 在这项工作中,我们介绍DAEMON - 一个新的数据- 高级数据集- 智能软件变异变异变。 DAEMON的关键属性是, 应用该变异的特性类型, 它用于不使用甚易变的特性, 并解释内部变变变变型数据。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
124+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关VIP内容
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员