How to identify and characterize functional brain networks (BN) is fundamental to gain system-level insights into the mechanisms of brain organizational architecture. Current functional magnetic resonance (fMRI) analysis highly relies on prior knowledge of specific patterns in either spatial (e.g., resting-state network) or temporal (e.g., task stimulus) domain. In addition, most approaches aim to find group-wise common functional networks, individual-specific functional networks have been rarely studied. In this work, we propose a novel Twin-Transformers framework to simultaneously infer common and individual functional networks in both spatial and temporal space, in a self-supervised manner. The first transformer takes space-divided information as input and generates spatial features, while the second transformer takes time-related information as input and outputs temporal features. The spatial and temporal features are further separated into common and individual ones via interactions (weights sharing) and constraints between the two transformers. We applied our TwinTransformers to Human Connectome Project (HCP) motor task-fMRI dataset and identified multiple common brain networks, including both task-related and resting-state networks (e.g., default mode network). Interestingly, we also successfully recovered a set of individual-specific networks that are not related to task stimulus and only exist at the individual level.


翻译:如何识别和定性功能性脑网络(BN)对于获得对大脑组织结构机制的系统层面洞察力至关重要。当前功能性磁共振(fMRI)分析高度依赖对空间(例如休息状态网络)或时间(例如任务刺激)领域特定模式的先前知识。此外,大多数方法的目的是寻找群体性共同功能网络,很少研究个人特有功能网络。在这项工作中,我们提议了一个全新的双轨式转移者框架,以自我监督的方式同时推导空间和时间空间空间空间的共同和单独功能网络。第一个变异器将空间化信息作为输入并生成空间特征,而第二个变异器则将时间相关信息作为输入和输出时间性特征。空间和时间性特征通过两个变异器之间的互动(重量共享)和制约进一步分离为共同和个别的。我们将双轨式变异器应用到人类连接项目(HCP)的发动机任务-fMRI数据集,并确定了多个共同的脑网络,包括任务相关和休息状态网络,而我们又成功地确定了一个单个和默认型网络。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员