Several decades ago the Proximal Point Algorithm (PPA) started to gain much attraction for both abstract operator theory and the numerical optimization communities. Even in modern applications, researchers still use proximal minimization theory to design scalable algorithms that overcome nonsmoothness in high dimensional models. Several remarkable references as \cite{Fer:91,Ber:82constrained,Ber:89parallel,Tom:11} analyzed the tight local relations between the convergence rate of PPA and the regularity of the objective function. However, without taking into account the concrete computational effort paid for computing each PPA iteration, any iteration complexity remains abstract and purely informative. In this manuscript we aim to evaluate the computational complexity of practical PPA in terms of (proximal) gradient/subgradient iterations, which might allow a fair positioning of the famous PPA numerical performance in the class of first order methods. First, we derive nonasymptotic iteration complexity estimates of exact and inexact PPA to minimize convex functions under $\gamma-$Holderian growth: $\BigO{\log(1/\epsilon)}$ (for $\gamma \in [1,2]$) and $\BigO{1/\epsilon^{\gamma - 2}}$ (for $\gamma > 2$). In particular, we recover well-known results on exact PPA: finite convergence for sharp minima and linear convergence for quadratic growth, even under presence of inexactness. Second, assuming that an usual (proximal) gradient/subgradient method subroutine is employed to compute inexact PPA iteration, we show novel computational complexity bounds on a restarted variant of the inexact PPA, available when no information on the growth of the objective function is known. In the numerical experiments we confirm the practical performance and implementability of our schemes.
翻译:几十年前, Proximal Point Alogorithm (PPA) 开始为抽象操作员理论和数字优化社区获得很大的吸引力。 即使在现代应用中, 研究人员仍然使用精确最小化理论来设计可缩放的算法, 克服高维模型中的非mooth性。 一些显著的引用, 如\ cite{Fer:91, Ber: 82 constrate, Ber: 89parallel, Tom:11} 分析了 PPPA 趋同率与目标功能的规律性能之间的密切当地关系。 然而, 即便不考虑计算每个 PPPA 变同级的计算具体计算努力, 任何循环的复杂性仍然是抽象的和纯粹的。 在这个手稿中, 我们的目标是从( pressal_ gal_ hold) 变异性计算实际PPPPPPA的计算复杂性, 当我们最接近和变异性数据时, 我们的精确性变异性( 我们的精确性) 和变异性估算 PPA 的精确性在 $( 美元 美元 美元 ===== 美元 美元 美元 = 美元 美元 美元 IMPA) 增长 的 的计算中显示一个已知值 的精确性能 和变化的精确化数据 。