In adaptive bitrate streaming, resolution cross-over refers to the point on the convex hull where the encoding resolution should switch to achieve better quality. Accurate cross-over prediction is crucial for streaming providers to optimize resolution at given bandwidths. Most existing works rely on objective Video Quality Metrics (VQM), particularly VMAF, to determine the resolution cross-over. However, these metrics have limitations in accurately predicting resolution cross-overs. Furthermore, widely used VQMs are often trained on subjective datasets collected using the Absolute Category Rating (ACR) methodologies, which we demonstrate introduces significant uncertainty and errors in resolution cross-over predictions. To address these problems, we first investigate different subjective methodologies and demonstrate that Pairwise Comparison (PC) achieves better cross-over accuracy than ACR. We then propose a novel metric, Resolution Cross-over Quality Loss (RCQL), to measure the quality loss caused by resolution cross-over errors. Furthermore, we collected a new subjective dataset (LSCO) focusing on live streaming scenarios and evaluated widely used VQMs, by benchmarking their resolution cross-over accuracy.
翻译:暂无翻译