Unique Sink Orientations (USOs) of cubes can be used to capture the combinatorial structure of many essential algebraic and geometric problems. For various structural and algorithmic questions, including enumeration of USOs and algorithm analysis, it is crucial to have systematic constructions of USOs. While some construction methods for USOs already exist, each one of them has some significant downside. Most of the construction methods have limited expressivity -- USOs with some desired properties cannot be constructed. In contrast, the phase flips of Schurr can construct all USOs, but the operation is not well understood. We were inspired by techniques from cube tilings of space; we expand upon existing techniques in the area to develop generalized rewriting rules for USOs. These rewriting rules are a new construction framework which can be applied to all USOs. The rewriting rules can generate every USO using only USOs of lower dimension. The effect of any specific rewriting rule on an USO is simple to understand. A special case of our construction produces a new elementary transformation of USOs, which we call a partial swap. We further investigate the relationship between partial swaps and phase flips and generalize partial swaps to phase swaps.
翻译:立方体的单一Sink方向(USOs)可以用来捕捉许多基本代数和几何问题的组合结构。对于各种结构和算法问题,包括列举USO和算法分析,至关重要的是要系统构建USO。虽然USO的某些建筑方法已经存在,但其中每一个都有一些明显的下行。大多数建筑方法具有有限的表达性 -- -- 无法构建具有某些理想属性的USO。相反,舒尔的阶段翻转可以构建所有USO,但操作却不为人所熟知。我们受到空间立方平铺技术的启发;我们扩大该地区现有的技术,为USO制定通用的重写规则。这些重写规则是一个新的建筑框架,可以适用于所有USO。重新撰写规则可以仅使用低维的USO。任何具体的重写规则对USO的影响都很容易理解。我们建筑的特殊案例产生了一个新的USO基本转换,我们称之为部分转换和部分转换。我们进一步调查整个转换阶段之间的部分转换。