New local linear estimators are proposed for a wide class of nonparametric regression models. The estimators are uniformly consistent regardless of satisfying traditional conditions of depen\-dence of design elements. The estimators are the solutions of a specially weighted least-squares method. The design can be fixed or random and does not need to meet classical regularity or independence conditions. As an application, several estimators are constructed for the mean of dense functional data. The theoretical results of the study are illustrated by simulations. An example of processing real medical data from the epidemiological cross-sectional study ESSE-RF is included. We compare the new estimators with the estimators best known for such studies.
翻译:为一系列广泛的非参数回归模型提出了新的局部线性估计值。 估计值统一一致, 不论设计元素的自成一体的传统条件如何满足。 估计值是一种特别加权最小方的解决方案。 设计可以是固定的或随机的, 不需要满足传统规律性或独立性条件。 作为应用程序, 为密集功能数据平均值建造了数个估计值。 模拟演示了研究的理论结果。 包括了一个处理流行病学跨部门研究ESSE- RF 中真实医学数据的例子。 我们比较了新的估计值与这类研究最熟悉的估算值。