In the context of Epidemic Intelligence, many Event-Based Surveillance (EBS) systems have been proposed in the literature to promote the early identification and characterization of potential health threats from online sources of any nature. Each EBS system has its own surveillance definitions and priorities, therefore this makes the task of selecting the most appropriate EBS system for a given situation a challenge for end-users. In this work, we propose a new evaluation framework to address this issue. It first transforms the raw input epidemiological event data into a set of normalized events with multi-granularity, then conducts a descriptive retrospective analysis based on four evaluation objectives: spatial, temporal, thematic and source analysis. We illustrate its relevance by applying it to an Avian Influenza dataset collected by a selection of EBS systems, and show how our framework allows identifying their strengths and drawbacks in terms of epidemic surveillance.
翻译:在传染病情报领域,许多事件监测系统被提出用于从任何形式的在线信息源中推广早期识别和表征潜在的健康威胁。每个事件监测系统都有自己的监测定义和优先级,因此这使得为一个给定情况选择最适合的事件监测系统成为最大的挑战之一。在这项工作中,我们提出了一个新的评估框架来解决这个问题。它首先将原始输入的流行病学事件数据转换为具有多种粒度的标准化事件,然后根据四个评估目标(空间、时间、主题和来源分析)进行描述性的回顾分析。 我们通过将其应用于由一些事件监测系统收集的禽流感数据集来说明其相关性,并展示了我们的框架如何识别它们在流行病监测方面的优势和不足。