The classic paper of Shapley and Shubik \cite{Shapley1971assignment} characterized the core of the assignment game using powerful ideas from matching theory and LP-duality theory and their highly non-trivial interplay. Whereas the core of the assignment game is always non-empty, that of the general graph matching game the core can be empty. This paper salvages the situation by giving an imputation in the $2/3$-approximate core for the latter. We show that this bound is best possible -- it is the integrality gap of the natural underlying LP. Our profit allocation method goes further: the multiplier on the profit of an agent lies in the interval $[{2 \over 3}, 1]$, depending on how severely constrained the agent is. The core is a quintessential solution concept in cooperative game theory. It contains ways of distributing the total worth of a game among agents in such a way that no sub-coalition has incentive to secede from the grand coalition. Our $2/3$-approximate imputation implies that a sub-coalition will be able to gain at most a $3/2$ factor by seceding, and less in typical cases.
翻译:Shapley 和 Shubik 和 Shubik 经典论文 Shapley 和 Shubik 和 Shubik 的 Shaple 和 Shubik 和 Shapple 1971traction 经典论文 确定了任务游戏的核心特征,使用了来自匹配理论和 LP- 质量理论及其高度非三边相互作用的强大理念。 虽然任务游戏的核心总是非空的, 但核心的普通图形匹配游戏的核心却可能是空的。 本文通过在2/3美元与后者相近的核心中给出一个估算来弥补这一局面。 我们显示,这个约束是最好的可能 -- -- 这是自然基底LP的整体性差距。 我们的利润分配方法更进一步: 代理人利润的乘数在 $[ $2\ 超过 3} 1] 的间隔内, 取决于代理人是如何受严格限制的。 核心是合作游戏理论中一个典型的典型解决方案概念。 它包含一种在代理人之间分配游戏总价值的方法, 其分解方式没有动力从大联盟中分离。 我们的相近23 的赔率 意味着一个子组合将获得最多3/2 。