Due to the nonlocal feature of fractional differential operators, the numerical solution to fractional partial differential equations usually requires expensive memory and computation costs. This paper develops a fast scheme for fractional viscoelastic models of wave propagation. We first apply the Laplace transform to convert the time-fractional constitutive equation into an integro-differential form that involves the Mittag-Leffler function as a convolution kernel. Then we construct an efficient sum-of-exponentials (SOE) approximation for the Mittag-Leffler function. We use mixed finite elements for the spatial discretization and the Newmark scheme for the temporal discretization of the second time-derivative of the displacement variable in the kinematical equation and finally obtain the fast algorithm. Compared with the traditional L1 scheme for time fractional derivative, our fast scheme reduces the memory complexity from $\mathcal O(N_sN) $ to $\mathcal O(N_sN_{exp})$ and the computation complexity from $\mathcal O(N_sN^2)$ to $\mathcal O(N_sN_{exp}N)$, where $N$ denotes the total number of temporal grid points, $N_{exp}$ is the number of exponentials in SOE, and $N_s$ represents the complexity of memory and computation related to the spatial discretization. Numerical experiments confirm the theoretical results.
翻译:暂无翻译