The ADAM optimizer is exceedingly popular in the deep learning community. Often it works very well, sometimes it doesn't. Why? We interpret ADAM as a combination of two aspects: for each weight, the update direction is determined by the sign of stochastic gradients, whereas the update magnitude is determined by an estimate of their relative variance. We disentangle these two aspects and analyze them in isolation, gaining insight into the mechanisms underlying ADAM. This analysis also extends recent results on adverse effects of ADAM on generalization, isolating the sign aspect as the problematic one. Transferring the variance adaptation to SGD gives rise to a novel method, completing the practitioner's toolbox for problems where ADAM fails.
翻译:ADAM 优化器在深层学习界非常受欢迎, 通常效果很好, 有时是不行的。 为什么? 我们把ADAM 解释成是两个方面的结合: 每个重量, 更新的方向由随机梯度的标记决定, 而更新的程度则由其相对差异的估计决定。 我们分解这两个方面, 孤立地分析它们, 了解ADAM 背后的机制。 这项分析还扩展了ADAM 对一般化的不利影响的最新结果, 将标志部分与问题部分隔离开来。 将差异调整转换到 SGD 产生一种新颖的方法, 完成对ADAM 失败问题的操作工具箱 。