Our computers today, from sophisticated servers to small smartphones, operate based on the same computing model, which requires running a sequence of discrete instructions, specified as an algorithm. This sequential computing paradigm has not yet led to a fast algorithm for an NP-complete problem despite numerous attempts over the past half a century. Unfortunately, even after the introduction of quantum mechanics to the world of computing, we still followed a similar sequential paradigm, which has not yet helped us obtain such an algorithm either. Here a completely different model of computing is proposed to replace the sequential paradigm of algorithms with inherent parallelism of physical processes. Using the proposed model, instead of writing algorithms to solve NP-complete problems, we construct physical systems whose equilibrium states correspond to the desired solutions and let them evolve to search for the solutions. The main requirements of the model are identified and quantum circuits are proposed for its potential implementation.


翻译:我们今天的计算机,从先进的服务器到小智能手机,都以同样的计算模型为基础运行,这需要运行一系列独立的指令,具体地说是一种算法。尽管过去半个世纪来进行了无数次尝试,但这种顺序计算模式尚未导致一个NP完全问题的快速算法。 不幸的是,即使在将量子力学引入计算世界之后,我们仍然遵循类似的顺序模式,这种模式也未能帮助我们获得这样的算法。在这里,一个完全不同的计算模型被提议用物理过程的内在平行性来取代算法的顺序模式。 使用拟议的模型,而不是写算法来解决NP-完整的问题,我们建造的物理系统,其平衡状态与所希望的解决方案相符,并让这些解决方案演变成寻找解决方案。模型的主要要求已经确定,并且为可能实施该模型提出了量子电路。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
专知会员服务
61+阅读 · 2020年3月4日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员