We present a projection-based framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work we extend the fully implicit method presented in Khanwale et al. [{\it A fully-coupled framework for solving Cahn-Hilliard Navier-Stokes equations: Second-order, energy-stable numerical methods on adaptive octree based meshes.}, arXiv:2009.06628 (2020)], to a block iterative hybrid method. We use a projection-based semi-implicit time discretization for the Navier-Stokes and a fully-implicit time discretization for the Cahn-Hilliard equation. We use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) formulation. Pressure is decoupled using a projection step, which results in two linear positive semi-definite systems for velocity and pressure, instead of the saddle point system of a pressure-stabilized method. All the linear systems are solved using an efficient and scalable algebraic multigrid (AMG) method. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. The overall approach allows the use of relatively large time steps with much faster time-to-solve. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise and Rayleigh-Taylor instability.
翻译:我们提出了一个基于预测的框架,用于解决热动力一致的Cahn-Hilliard Navier-Stokes系统,该系统以两阶段流为模型。在这项工作中,我们推广了Khanwale等人提出的完全隐含的方法。[一个完全混合的解决Cahn-Hilliard Navier-Stokes等式的框架:二级,适应性奥克特类基于 meshes 的能量稳定数字方法。}, arxiv:2009.06628(202020202020),用于一个块式迭代混合方法。我们使用基于预测的半隐含时间化的半隐含时间分解法,用于单一纳维-Stokes和完全隐含的时间分解法,用于Cahn-Hillard等式的完全隐含时间分解法。我们在空间使用一个符合连续的Galerkin(c)的固定元素化元素方法,用于基于残余的多级变制多级(RBMS) 。压力以两个直线性半定型系统进行速度和压力和压力分解,而不是压力-时间点系统, 使用高级递解的大幅递解的递解的系统。