Data poisoning considers an adversary that distorts the training set of machine learning algorithms for malicious purposes. In this work, we bring to light one conjecture regarding the fundamentals of data poisoning, which we call the Lethal Dose Conjecture. The conjecture states: If $n$ clean training samples are needed for accurate predictions, then in a size-$N$ training set, only $\Theta(N/n)$ poisoned samples can be tolerated while ensuring accuracy. Theoretically, we verify this conjecture in multiple cases. We also offer a more general perspective of this conjecture through distribution discrimination. Deep Partition Aggregation (DPA) and its extension, Finite Aggregation (FA) are recent approaches for provable defenses against data poisoning, where they predict through the majority vote of many base models trained from different subsets of training set using a given learner. The conjecture implies that both DPA and FA are (asymptotically) optimal -- if we have the most data-efficient learner, they can turn it into one of the most robust defenses against data poisoning. This outlines a practical approach to developing stronger defenses against poisoning via finding data-efficient learners. Empirically, as a proof of concept, we show that by simply using different data augmentations for base learners, we can respectively double and triple the certified robustness of DPA on CIFAR-10 and GTSRB without sacrificing accuracy.
翻译:数据中毒是扭曲用于恶意目的的机器学习算法的培训组合的对手。 在这项工作中,我们提出了一个关于数据中毒基本原理的猜测。 我们称之为致命多斯测谎。 猜测指出: 如果准确预测需要清洁培训样本,那么,在规模-N美元的培训组合中,只有美元(N/n)美元有毒样本可以被容忍,同时确保准确性。 从理论上讲,我们核实了多种情况下的这种推测。 我们还从更广义的角度从分布歧视的角度来看待这一推测。 深度分割聚合(DPA)及其扩展, 金融聚合(FI)是最近针对数据中毒的可行防御方法, 即:如果准确性培训样本需要用美元-N美元进行准确性预测, 那么在一个规模-N美元的培训组合中,只有美元($-N/n)的中毒样本样本可以被容忍。 推测意味着,如果我们拥有最有数据效率的学习者,那么,我们就能把它变成最可靠的防御方法之一。 深度分离(DPA)及其扩展(DPA) (DPA) (DP) (DP) (DP) (DP) (DP) (DP) (DP) ) (DP) (DP) (DP) (DP) (DP) (DP) (DP)) (DP) (DP)) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP)) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP)) (DP) (DP) (DP) (DP) (DP) (DP) (DP)) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP)) (DP) (DP) (DP) (DP) (DP) (DP) (DP))) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (DP) (