A universal fault-tolerant quantum computer that can solve efficiently problems such as integer factorization and unstructured database search requires millions of qubits with low error rates and long coherence times. While the experimental advancement towards realizing such devices will potentially take decades of research, noisy intermediate-scale quantum (NISQ) computers already exist. These computers are composed of hundreds of noisy qubits, i.e. qubits that are not error-corrected, and therefore perform imperfect operations in a limited coherence time. In the search for quantum advantage with these devices, algorithms have been proposed for applications in various disciplines spanning physics, machine learning, quantum chemistry and combinatorial optimization. The goal of such algorithms is to leverage the limited available resources to perform classically challenging tasks. In this review, we provide a thorough summary of NISQ computational paradigms and algorithms. We discuss the key structure of these algorithms, their limitations, and advantages. We additionally provide a comprehensive overview of various benchmarking and software tools useful for programming and testing NISQ devices.
翻译:一个能解决诸如整数系数化和无结构化数据库搜索等有效问题的通用容错量计算机,需要数以百万公分位的低误差率和长时间的连贯时间。虽然实现这些装置的实验性进展可能需要数十年的研究,但已经存在杂乱的中间量计算机。这些计算机由数百个杂乱的量子组成,即没有纠正错误的Qubit,因此在有限的协调时间内进行不完善的操作。在寻找这些装置的量子优势时,已经提议了在物理学、机器学习、量子化学和组合优化等不同学科应用的算法。这些算法的目标是利用有限的现有资源来完成典型的具有挑战性的任务。在这次审查中,我们全面概述了NISQ的计算模式和算法。我们讨论了这些算法的关键结构、其局限性和优点。我们还全面概述了可用于编程和测试NISQ装置的各种基准和软件工具。