Network pruning and quantization are proven to be effective ways for deep model compression. To obtain a highly compact model, most methods first perform network pruning and then conduct network quantization based on the pruned model. However, this strategy may ignore that they would affect each other and thus performing them separately may lead to sub-optimal performance. To address this, performing pruning and quantization jointly is essential. Nevertheless, how to make a trade-off between pruning and quantization is non-trivial. Moreover, existing compression methods often rely on some pre-defined compression configurations. Some attempts have been made to search for optimal configurations, which however may take unbearable optimization cost. To address the above issues, we devise a simple yet effective method named Single-path Bit Sharing (SBS). Specifically, we first consider network pruning as a special case of quantization, which provides a unified view for pruning and quantization. We then introduce a single-path model to encode all candidate compression configurations. In this way, the configuration search problem is transformed into a subset selection problem, which significantly reduces the number of parameters, computational cost and optimization difficulty. Relying on the single-path model, we further introduce learnable binary gates to encode the choice of bitwidth. By jointly training the binary gates in conjunction with network parameters, the compression configurations of each layer can be automatically determined. Extensive experiments on both CIFAR-100 and ImageNet show that SBS is able to significantly reduce computational cost while achieving promising performance. For example, our SBS compressed MobileNetV2 achieves 22.6x Bit-Operation (BOP) reduction with only 0.1% drop in the Top-1 accuracy.


翻译:网络修剪和量化被证明是深层模型压缩的有效方法。 为了获得高度紧凑的模型, 多数方法先是进行网络修剪, 然后是根据经修剪的模型进行网络修剪。 但是, 这个战略可能忽略它们相互影响, 从而分别执行, 可能会导致亚最佳性性能。 要解决这个问题, 联合修剪和量化是必要的。 然而, 如何在裁剪和量化之间进行权衡是非三重性的。 此外, 现有的压缩方法往往依靠某些预设的压缩配置。 已经尝试过一些尝试来寻找最佳的 OP 高级 BS 的精确配置, 但是这可能会带来无法承受的优化成本。 然而, 为了解决上述问题, 我们设计了一个简单而有效的方法, 叫做单一方式的BB 共享。 具体地说, 我们首先将网络的运行作为一个特殊的二次裁剪裁的特例, 这为正性与四分立和四分立。 然后我们引入一个单一的模型来编码所有的候选人压缩配置。 这样, 配置搜索问题就变成了一个子级级的OI 级的精确的精确的计算, 但是, 将让我们的精细化的精化的精度测试, 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员