Due to the emergence of various wireless sensing technologies, numerous positioning algorithms have been introduced in the literature, categorized into \emph{geometry-driven positioning} (GP) and \emph{data-driven positioning} (DP). These approaches have respective limitations, e.g., a non-line-of-sight issue for GP and the lack of a labeled dataset for DP, which can be complemented by integrating both methods. To this end, this paper aims to introduce a novel principle called \emph{combinatorial data augmentation} (CDA), a catalyst for the two approaches' seamless integration. Specifically, GP-based datasets augmented from different combinations of positioning entities, called \emph{preliminary estimate locations} (PELs), can be used as DP's inputs. We confirm the CDA's effectiveness from field experiments based on WiFi \emph{round-trip times} (RTTs) and \emph{inertial measurement units} (IMUs) by designing several CDA-based positioning algorithms. First, we show that CDA offers various metrics quantifying each PEL's reliability, thereby filtering out unreliable PELs for WiFi RTT positioning. Second, CDA helps compute the measurement covariance matrix of a Kalman filter for fusing two position estimates derived by WiFi RTT and IMUs. Third, we use the above position estimate as the corresponding PEL's real-time label for fingerprint-based positioning as a representative DP algorithm. It provides accurate and reliable positioning results, says an average positioning error of $1.51$ (m) with a standard deviation of $0.88$~(m).


翻译:由于各种无线传感技术的出现,在文献中引入了众多的定位算法,分为基于几何的定位(GP)和基于数据的定位(DP)。这些方法各自有缺点,例如,GP存在非视距问题,DP缺乏带标签的数据集,可以通过集成两种方法来互补。为此,本文旨在介绍一种称为\emph{组合数据增强}(CDA)的新原则,它是两种方法无缝集成的催化剂。具体来说,基于GP的数据集从不同的定位实体组合增强,称为\emph{初步估计位置}(PELs),可以用作DP的输入。我们通过基于WiFi往返时间(RTTs)和惯性测量单元(IMUs)的现场实验确认了CDA的有效性,设计了几种基于CDA的定位算法。首先,我们证明CDA提供了各种指标来量化每个PEL的可靠性,从而过滤出不可靠的PEL以进行WiFi RTT定位。第二,CDA有助于计算卡尔曼滤波器的测量协方差矩阵,用于融合通过WiFi RTT和IMUs得到的两个位置估计。第三,我们使用上述位置估计作为相应PEL的实时标签,作为代表性的DP算法进行指纹定位。它提供了准确可靠的定位结果,平均定位误差为$1.51$(米),标准差为$0.88$(米)。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员