Multi-channel time-series datasets are popular in the context of human activity recognition (HAR). On-body device (OBD) recordings of human movements are often preferred for HAR applications not only for their reliability but as an approach for identity protection, e.g., in industrial settings. Contradictory, the gait activity is a biometric, as the cyclic movement is distinctive and collectable. In addition, the gait cycle has proven to contain soft-biometric information of human groups, such as age and height. Though general human movements have not been considered a biometric, they might contain identity information. This work investigates person and soft-biometrics identification from OBD recordings of humans performing different activities using deep architectures. Furthermore, we propose the use of attribute representation for soft-biometric identification. We evaluate the method on four datasets of multi-channel time-series HAR, measuring the performance of a person and soft-biometrics identification and its relation concerning performed activities. We find that person identification is not limited to gait activity. The impact of activities on the identification performance was found to be training and dataset specific. Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
翻译:多通道时间序列数据集在人类活动识别(HAR)中很受欢迎。在工业设置中,人体设备(OBD)记录的人类运动通常被用于HAR应用程序,不仅因为其可靠性,而且因为这是一种身份保护的方法。与此相反,步态活动是一种生物识别技术,因为循环运动是特有的和可收集的。此外,步态周期已被证明包含人群的软生物识别信息,如年龄和身高。虽然一般的人体运动没有被认为是生物识别技术,但他们可能包含身份信息。本研究探讨了使用深层体系结构从OBD记录的人进行不同活动的人员和软生物识别身份验证。此外,我们提出了软生物识别的属性表示方法。我们在四个多通道时间序列HAR数据集上评估了该方法的性能,测量了人员和软生物识别的身份验证以及其与执行的活动之间的关系。我们发现人员身份验证不仅限于步态活动。活动对识别性能的影响发现是训练和数据集特定的。基于软生物识别的属性表示显示出有希望的结果,并强调了更大的数据集的必要性。