Source-free Unsupervised Domain Adaptation (SF-UDA) aims to adapt a well-trained source model to an unlabeled target domain without access to the source data. One key challenge is the lack of source data during domain adaptation. To handle this, we propose to mine the hidden knowledge of the source model and exploit it to generate source avatar prototypes. To this end, we propose a Contrastive Prototype Generation and Adaptation (CPGA) method. CPGA consists of two stages: Prototype generation and Prototype adaptation. Extensive experiments on three UDA benchmark datasets demonstrate the superiority of CPGA. However, existing SF.UDA studies implicitly assume balanced class distributions for both the source and target domains, which hinders their real applications. To address this issue, we study a more practical SF-UDA task, termed imbalance-agnostic SF-UDA, where the class distributions of both the unseen source domain and unlabeled target domain are unknown and could be arbitrarily skewed. This task is much more challenging than vanilla SF-UDA due to the co-occurrence of covariate shifts and unidentified class distribution shifts between the source and target domains. To address this task, we extend CPGA and propose a new Target-aware Contrastive Prototype Generation and Adaptation (T-CPGA) method. Specifically, for better prototype adaptation in the imbalance-agnostic scenario, T-CPGA applies a new pseudo label generation strategy to identify unknown target class distribution and generate accurate pseudo labels, by utilizing the collective intelligence of the source model and an additional contrastive language-image pre-trained model. Meanwhile, we further devise a target label-distribution-aware classifier to adapt the model to the unknown target class distribution. We empirically show that T-CPGA significantly outperforms CPGA and other SF-UDA methods in imbalance-agnostic SF-UDA.
翻译:暂无翻译